Water induced electrical hysteresis in germanium nanowires: a theoretical study.
نویسندگان
چکیده
We apply DFT calculations to evaluate the electronic properties of germanium nanowires (GeNWs) upon adsorption of water molecules and reveal the possible causes of the experimentally observed electrical hysteresis in GeNWs based electronic devices. We show that the absorption of water molecules on the GeNW surface would lead to the formation of hydroxyl passivated GeNWs (OH-GeNWs). The first step of the formation mechanism is physisorption of water molecules toward a Ge atom then followed by dissociation of water molecules to form OH-GeNWs, consistent with experimental observation of reversible and irreversible electrical hystereses. More importantly, we also predict that the effective masses of OH-GeNWs depend strongly on their growth orientation and depend nonlinearly on the OH coverage percentage. We propose that the electrical hysteresis phenomenon observed in experiment can be attributed to the formation of OH-GeNWs with different OH coverage percentages, along with different alignments of the OH groups on the GeNW surface, and also the presence of surface trap state defects, during the different stages of I-V measurement.
منابع مشابه
Surface chemistry and electrical properties of germanium nanowires.
Germanium nanowires (GeNWs) with p- and n-dopants were synthesized by chemical vapor deposition (CVD) and were used to construct complementary field-effect transistors (FETs). Electrical transport and X-ray photoelectron spectroscopy (XPS) data are correlated to glean the effects of Ge surface chemistry to the electrical characteristics of GeNWs. Large hysteresis due to water molecules strongly...
متن کاملGold catalytic Growth of Germanium Nanowires by chemical vapour deposition method
Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...
متن کاملElectrical quadruple hysteresis in Pd-doped vanadium pentoxide nanowires due to water adsorption.
Humidity-dependent current-voltage (I-V) characteristics of Pd-doped vanadium pentoxide nanowires (Pd-VONs) were investigated. Electrical quadruple hysteresis (QH) was observed and attributed to the large amount of water molecules adsorbed on the nanowires. Using QH in Pd-VONs, the reaction of water with PdO was interpreted as the water molecules are desorbed and then dissociated with increasin...
متن کاملPromoting Cell Proliferation Using Water Dispersible Germanium Nanowires
Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless a...
متن کاملVariation of the Electronic Functionality of Self-Seeded Germanium Nanowires through Synthesis Determined Core-Shell Interface States
Bottom up grown germanium nanowires may have an important role to play in future electronic devices. While the electrical properties of nanowires grown using a metallic seed as a catalyst have been extensively reported we study self-seeded nanowires in this thesis. Such wires are core-shell in nature and are grown without any intentional doping. Self-seeded nanowires have been previously propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 24 شماره
صفحات -
تاریخ انتشار 2011